
Scale dependence of sorption coefficients for contaminant transport in

saturated fractured rock

Zhenxue Dai,1 Andrew Wolfsberg,1 Zhiming Lu,1 and Hailin Deng1,2

Received 29 October 2008; revised 20 November 2008; accepted 1 December 2008; published 13 January 2009.

[1] A significant challenge in contaminant transport
modeling is to obtain a mechanistic understanding of
transport parameter scaling that accurately addresses the
combined influence of physical and chemical heterogeneities
at different scales. In this paper, we have developed a
scaling methodology to upscale matrix sorption coefficients
for fractured-rock systems by characterizing both the
tortuosity field (physical heterogeneity) and retardation
factor field (chemical heterogeneity) in the rock matrix. We
compute the effective tortuosity with a conservative tracer
(e.g., tritium), and then using a sorbing tracer (e.g.,
uranium), we derive the equations for upscaling the
sorption coefficients in a saturated, fractured rock system.
The derived upscaling equations for the sorption
coefficients are verified with Monte Carlo simulations,
which are based on a generalized dual-porosity model to
enable highly efficient and accurate numerical simulations
of diffusive concentration fronts moving between the
fractures and matrix material. The scientific results from
this study will provide a theoretical and practical link
between controlled experimental results at scales
increasing from the laboratory bench to the field scale at
which risk assessment and contaminant remediation are
actually conducted. Citation: Dai, Z., A. Wolfsberg, Z. Lu,

and H. Deng (2009), Scale dependence of sorption coefficients

for contaminant transport in saturated fractured rock, Geophys.

Res. Lett., 36, L01403, doi:10.1029/2008GL036516.

1. Introduction

[2] Spatial variations of the reactive transport parameters
in porous media have been studied at variable scales ranging
from column experiments to field tracer tests [e.g., Ginn,
1999; Xu et al., 1999; Yeh, 2000; Davis et al., 2004; Dai
and Samper, 2006; Dai et al., 2006; Robinson et al., 2007].
Scale dependence of the transport parameters such as
retardation factors in porous media has been addressed by
Bellin et al. [1993], Rajaram [1997], and Fernàndez-Garcia
et al. [2005]. Using a Lagrangian approach, Rajaram [1997]
defined the effective retardation factors in temporal and
spatial domains, and derived the theoretical expressions for
these effective factors by assuming the spatial correlations
between log conductivity and log retardation factor fields.
His results indicate that retardation factors vary with scale,

and at large temporal and spatial scales, the effective
retardation factor approaches the arithmetic mean of the
random retardation factor field. Fernàndez-Garcia et al.
[2005] obtained similar conclusions of the scale dependence
of the effective retardation factors in the three-dimensional
physically and chemically heterogeneous porous media.
More studies on the scaling of the retardation factors in
porous media have been performed by Cvetkovic and
Dagan [1994], Chao et al. [2000], Andersson et al.
[2004] and Samper and Yang [2006].
[3] When dealing with sorption in fractured rock, we

obtain a substantially different conceptual model than for
porous media. In saturated fractured rock systems where the
primary pathway for groundwater flow is through the
fractures, the matrix material is saturated with groundwater
that is considered immobile in the dual-porosity conceptual
model [Tang et al., 1981; Sudicky and Frind, 1982].
Although the bulk of the water travels through the fracture,
the matrix can act as a reservoir to store contaminants
temporarily via matrix diffusion and sorption processes. If
a contaminant sorbs onto the matrix material for a period of
time, its transport rate in the fractures is effectively retarded
[Robinson, 1994]. Studies on the scaling of transport param-
eters in fractured rock have been conducted by Berkowitz
and Scher [1998], Reimus et al. [2003], Cvetkovic et al.
[2004],Dai et al. [2007], Liu et al. [2007] and Frampton and
Cvetkovic [2007]. A mass transfer coefficient was defined by
Reimus et al. [2003] to describe the rate at which a particular
solute transfers between fractures and the rock matrix
material when both diffusion and sorption are involved.
The mass transfer coefficient depends on the matrix diffu-
sion coefficient, retardation factor, fracture aperture, and
matrix porosity. Therefore, the mass transfer coefficient is a
lumped parameter that describes a critical component of
reactive contaminant transport in fractured rock systems
(advection and dispersion in the fractures being the other
components).
[4] The scaling of the retardation factor of a chemical

species is related to the variability of the sorption coeffi-
cients in the rock mineral facies [e.g., Allen-King et al.,
2006; Zavarin et al., 2004]. Without an applicable upscaling
rule, the parameters controlling sorption under field con-
ditions usually are approximated by the values derived from
column experiments. Because the parameters are spatially
heterogeneous at various scales, characterization of the
physical and chemical heterogeneities that control sorption
processes is required. Then, the upscaling equations are
derived to upscale the transport parameters from the mea-
surement scale to field or modeling grid scales. In this study,
we develop an upscaling methodology for modeling sorp-
tion in fractured rock at the field scale. Monte Carlo
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simulations are performed to demonstrate the accuracy of
the derived upscaling algorithms for the effective sorption
coefficient.

2. Transport Equations in Fractured Rock

[5] Fracture-matrix transport can be modeled with the
one-dimensional advection-dispersion equation with one-
dimensional diffusion occurring into the surrounding matrix
perpendicular to the flow direction in the fracture [Reimus et
al., 2003]. The controlling transport equations in fracture
and matrix are:
Fracture:

Rf

@Cf

@t
þ vf

@Cf

@x
� Df

@2Cf

@x2
� fDm

bh
@Cm

@z

����
z¼b

¼ 0: ð1aÞ

Matrix:

Rm

@Cm

@t
� Dm

@2Cm

@z2
¼ 0; ð1bÞ

where Cf and Cm are the tracer concentrations in the fracture
and matrix, respectively; vf is the fluid velocity in the
fracture (in x direction); Df is the dispersion coefficient in
the fracture; Dm is the matrix diffusion coefficient in z
direction; Rf and Rm are the retardation factors in the fracture
and matrix, respectively; h and f are the porosity in the
fracture and matrix, respectively; and b is the fracture half
aperture.
[6] Reimus et al. [2003] utilized semi-analytical methods

to solve Equations (1a–b), and derived an equation to
represent the mass transfer between the fracture and matrix
as:

CMT ¼
~f

ffiffiffiffiffiffiffiffiffiffiffiffi
~Dm

~Rm

p
~bh

: ð2Þ

Equation (2) states that the effective mass transfer
coefficient (CMT) at the field scale can be computed based
on the effective diffusion coefficient (~Dm), effective
retardation factor (~Rm, for non-reactive species ~Rm = 1),
effective matrix porosity (~f), effective fracture half aperture
(~b) and the fracture porosity. The fracture porosity in most
cases can be assumed equal to 1, and the matrix diffusion
coefficient can be expressed as ~Dm = ~tD0, where ~t is the
effective matrix tortuosity, and D0 is the molecular diffusion
coefficient in free water. Then, equation (2) is reformed as:

CMT ¼
~f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0~t~Rm

p
~b

: ð3Þ

3. Effective Retardation Factor

[7] In heterogeneous matrix material, the tortuosity and
retardation factor can be expressed as two one-dimensional
(along the flow direction), second-order stationary spatial
random variables, Y(x) = ln Rm and Z(x) = ln t. The
tortuosity random field represents the physical heterogene-

ity in the matrix, and the retardation factor random field
describes the chemical heterogeneity of the matrix. If we
take the measurement-scale (usually defined from column
experiments) mass transfer coefficient as a spatial random
variable, the field-scale mass transfer coefficient can be
expressed as the volume average of measurement-scale
mass transfer coefficients,

~f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0~t~Rm

p
~b

¼ 1

L

Z
L

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0tRm

p

b
dx: ð4Þ

where L is the length of the one-dimensional domain and x
is the spatial coordinate. By replacing the measurement-
scale porosity (f) and the half aperture (b) with their
effective values ~f and ~b (which are assumed to be estimated
separately), we have

~t~Rm ¼ 1

L

Z
L

e
1
2 Y xð ÞþZ xð Þð Þdx

� �2

: ð5Þ

[8] Decomposing Y(x) and Z(x) as the mean MY and MZ,
and zero-mean perturbation Y0(x) and Z0(x), Y(x) = MY +
Y0(x) and Z(x) = MZ + Z0(x), we rewrite (5) as a double
integral in the one-dimensional domain,

~t~Rm ¼ RG
mt

G

L2

Z
L

Z
L

e
1
2
Y 0 xð ÞþY 0 yð ÞþZ 0 xð ÞþZ 0 yð Þð Þdxdy

� �
; ð6Þ

where Rm
G = eMY and tG = eMZ are the geometric means of

measurement-scale retardation factor and tortuosity, and y is
also a one-dimensional spatial variable. By using Taylor
expansion and assuming the variance of Y(x) and Z(x)
smaller than unity, we have,

~t~Rm

� �
¼RG

mt
G 1þ s2

Y þ s2
Z

4
þ 1

4L2

�
Z
L

Z
L

CY x; yð Þ þ CZ x; yð Þ þ wYZ x; yð Þð Þdxdy
� ��

; ð7Þ

where operator h i represents expectation, sY
2 and sZ

2 are
variances of log retardation factor and log tortuosity, CY (x,
y) = hY0(x)Y0(y)i and CZ (x, y) = hZ0(x)Z0(y)i are their
covariances, respectively, and wYZ (x, y) = hY0(x)Z0(x) +
Y0(x)Z0(y) + Y0(y)Z0(y) + Y0(y)Z0(x)i is the cross-covariance of
retardation factor and tortuosity. We assume that the
retardation factor and tortuosity are not correlated, then
wYZ (x, y) = 0. The covariance functions of the log
retardation factor and log tortuosity can be assumed as:

CY hð Þ ¼ s2
Y e

� h
lY ;CZ hð Þ ¼ s2

Ze
� h

lZ ; ð8Þ

where the lag distance h = |x - y|, lY and lZ are integral
scales of log retardation factor and log tortuosity. Then,
evaluating the integral in Equation (7), we have

~t~Rm

� �
¼RG

mt
G 1þ s2

Y þ s2
Z

4
þ 1

2L2
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Yl

2
Y

L
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þ s2
Zl

2
Z

L

lZ

� 1þ e
� L

lZ

� ���
: ð9Þ
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[9] Equation (9) represents a combined scaling effect of
tortuosity and retardation factor. In order to obtain the
effective tortuosity and the effective retardation factor
individually, we assume the effective tortuosity is only
related to the heterogeneity of the matrix, but not related
to the type of solutes (e.g., conservative or reactive tracers).
Then, we can use two steps to define the two effective
parameters. First, we assume Rm is equal to 1 for a
conservative tracer (such as tritium) to define the effective
tortuosity, then

~th i ¼ tG 1þ s2
Z

4
þ s2

Zl
2
Z

2L2
L

lZ

� 1þ e
� L

lZ

� ���
: ð10Þ

[10] The structure of Equation (10) is similar to that of the
effective matrix diffusion equations by Dai et al. [2007]
because these two parameters are related by ~Dm = ~tD0.
Second, after defining the effective tortuosity, we can
compute the effective Rm of a sorbing tracer (such as
uranium) as:

~Rm

� �
¼ RG

m 1þ s2
Yt

G

4 ~th i 1þ 2l2
Y

L2
L

lY

� 1þ e
� L

lY

� �� �� �
: ð11Þ

Equation (11) indicates that the effective retardation factor
increases with the variance of Y(x) in the matrix. If the
matrix is homogeneous, the variance is 0, and the effective
Rm is equal to the geometric mean, which indicates that the

physical and chemical heterogeneities of matrix properties
are the source of the scale dependence of retardation factor.

4. Effective Sorption Coefficient

[11] The effective sorption coefficient can be computed
from the effective retardation factor from the equation:

~Kd ¼ ~Rm � 1
	 
 ~f

r
; ð12Þ

where, ~Kd is the effective sorption coefficient, and r is the
dry density of the matrix material. By replacing the effective
retardation factor in (12) with (11), we obtain an expression
for the effective sorption coefficient,

~Kd ¼
~fRG

m

r
1þ s2

Yt
G

4 ~th i 1þ 2l2
Y

L2
L

lY

� 1þ e
� L

lY

� �� �� �
� 1

RG
m

� �
:

ð13Þ

[12] A synthetic field-scale heterogeneous matrix system
is built to investigate the scale dependence of Kd, and the
corresponding statistical parameters are listed in Table 1.
The diffusion coefficient and retardation factor represent
uranium (a sorbing tracer) and are abstracted from
Wolfsberg et al. [2002]. Using (13) and the data listed in
Table 1, we plot the effective Kd vs. the integral scale in
curve A of Figure 1, which shows that the effective Kd

increases with the increasing integral scales. When the
integral scale is 300 m, the corresponding effective Kd is
4.7 cm3/g, which is about 20% larger than its geometric
mean (3.95 cm3/g). Curve B of Figure 1 shows that the
effective Kd decreases with the ratio of domain size and
integral scale. This result indicates that if the integral scale
is a constant, when the domain size increases, the effective
Kd decreases approaching the geometric mean of the
sampled sorption coefficients in the field.
[13] Furthermore, if lY/L ! 0, which means the field is

not correlated or Y(x) is totally randomly distributed, (13) is
approximated as:

~Kd ¼
~fRG

m

r
1þ s2

Yt
G

4 ~th i � 1

RG
m

� �
: ð14Þ

On the other hand, if lY/L is sufficiently large, (13) is
approximated as:

~Kd ¼
~fRG

m

r
1þ s2

Yt
G

2 ~th i � 1

RG
m

� �
: ð15Þ

Figure 1. Effective Kd increases with the integral scale
(curve A), and it decreases with the ratio of domain size and
integral scale (curve B).

Table 1. Statistical Parameters for a Synthetic Heterogeneous Matrix Systema

Parameters Mean of Y(x) or Z(x) Variance of Y(x) or Z(x) Geometric Mean Integral Scale (m) Effective Values

t �3.615 0.4 0.0269 200 0.0309
Dm (m2/s) N/A N/A 1.78 � 10�11 N/A 2.05 � 10�11

Rm 3.919 0.6 50.375 300 59.77
Kd (cm

3/g) N/A N/A 3.95 N/A 4.702
aD0 = 6.64 � 10�10 m2/s, r = 2.5 g/cm3, f = 0.2 and L = 1000 m.
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These two equations represent the minimum and the
maximum of the effective Kd, which are illustrated in
Figure 1.

5. Monte Carlo Simulations

[14] Monte Carlo simulations are conducted to assess the
accuracy of the upscaling equations of the sorption coef-
ficients in fractured rocks with the generalized double
porosity model (GDPM) [Zyvoloski et al., 2008]. The
GDPM numerical model has a length of 1000 m, a fracture
spacing of 2 m, and a half aperture of 0.001 m. The model
has 1001 fracture nodes (uniform resolution in direction of
flow Dx = 1 m) and 10010 matrix nodes (each fracture node
connects to 10 matrix nodes perpendicular to the flow
direction with variable spatial spaces from 0.001 to 0.4 m).
The inflow water has a constant injection rate of 0.012 kg/s.
In the inflow water, the solute concentration of uranium is
normalized to 1.
[15] There are two spatial random variables, tortuosity

Z(x) and retardation factor Y(x) to represent the physical and
chemical heterogeneities of the matrix. The heterogeneous
fields of Z(x) and Y(x) were generated with a Gaussian
random field generator [Lu and Zhang, 2004]. We generated
5000 realizations with the statistical data listed in Table 1.
The quality of the generated fields was checked by
comparing the covariance calculated from the generated
realizations with the analytical, exponential covariance
model. The comparison shows that the realizations match
the specified mean, variance, and integral scale. Then, the
generated Z(x) and Y(x) are converted to Dm and Kd for
GDPM models.
[16] For each Monte Carlo simulation, we use the

numerical simulator of GDPM [Zyvoloski et al., 2008] to
solve Equations (1a–b) and to compute the concentration
breakthrough at the outflow fracture node. The evolutions
of concentration mean and variance with the number of
simulations are also computed until the solution of the
Monte Carlo simulations converges (Figure 2). Figure 3
shows that the concentration breakthrough simulated with
the effective Kd calculated from Equation (13) matches well
to the mean concentration after 5000 Monte Carlo
simulations, while with the geometric mean of Kd the
concentration is overestimated. This result indicates that the

derived effective sorption coefficient is an accurate estimate
for the field-scale modeling.

6. Summary and Conclusion

[17] The physical and chemical heterogeneities of matrix
properties are a source of the scale dependence of sorption
coefficients. The major factors affecting sorption coefficient
heterogeneity include matrix porosity, tortuosity, mineral
facies and rock units. In this paper, we take the mass
transfer coefficient as a lumped spatial random variable to
incorporate the variation of all these factors and upscale the
sorption coefficient from the laboratory or measurement
scale to the field scale.
[18] The effective sorption coefficient is dependent on the

geometric mean, variance, integral scale, and domain size.
Its value increases with the integral scale and is greater than
the geometric mean. The Monte Carlo simulations with
5000 realizations of heterogeneous fields demonstrate that
the derived effective sorption coefficient is an accurate

Figure 2. The computed mean (left) concentration and (right) variance with the number of the Monte Carlo simulations at
1500 days in the outflow fracture node.

Figure 3. Comparison of the concentration breakthrough
curves computed from the effective Kd, the geometric mean
Kd and the Monte Carlo simulations, respectively.
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estimation of Kd for field-scale transport modeling in
saturated fractured rocks. The effective sorption coefficient
is derived under the condition that the variance is smaller
than unity. Further work is needed to identify the maximum
variance that is applicable for the first-order perturbation
method. The next extension of this effort will be to
incorporate the more complex physical and chemical
heterogeneity such as multimodal mineral facies to test
how the multimodal heterogeneity affects the scaling of the
sorption coefficients.
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Fernàndez-Garcia, D., T. H. Illangasekare, and H. Rajaram (2005), Differ-
ences in the scale dependence of dispersivity and retardation factors
estimated from forced-gradient and uniform flow tracer tests in three-

dimensional physically and chemically heterogeneous porous media,
Water Resour. Res., 41, W03012, doi:10.1029/2004WR003125.

Frampton, A., and V. Cvetkovic (2007), Upscaling particle transport in
discrete fracture networks: 2. Reactive tracers, Water Resour. Res., 43,
W10429, doi:10.1029/2006WR005336.

Ginn, T. R. (1999), On the distribution of multicomponent mixtures over
generalized exposure time in subsurface flow and reactive transport:
Foundations, and formulations for groundwater age, chemical heteroge-
neity, and biodegradation, Water Resour. Res., 35, 1395–1407.

Liu, H. H., Y. Q. Zhang, Q. Zhou, and F. J. Molz (2007), An interpretation
of potential scale dependence of the effective matrix diffusion coefficient,
J. Contam. Hydrol., 90, 41–57.

Lu, Z., and D. Zhang (2004), A comparative study on quantifying uncer-
tainty of flow in heterogeneous media using Monte Carlo simulations, the
conventional and the KL-based moment-equation approaches, SIAM J.
Sci. Comput., 26, 558–577.

Rajaram, H. (1997), Time and scale dependent effective retardation factors
in heterogeneous aquifers, Adv. Water Resour., 20, 217–230.

Reimus, P., G. Pohll, T. Mihevc, J. Chapman, M. Haga, B. Lyles, S. Kosinski,
R. Niswonger, and P. Sanders (2003), Testing and parameterizing a concep-
tual model for solute transport in a fractured granite using multiple tracers in
a forced-gradient test, Water Resour. Res., 39(12), 1356, doi:10.1029/
2002WR001597.

Robinson, B. A. (1994), A strategy for validating a conceptual model for
radionuclide migration in the saturated zone beneath Yucca Mountain,
Radioact. Waste Manage. Environ. Restor., 19, 73–96.

Robinson, B. A., A. V. Wolfsberg, H. S. Viswanathan, and P. W. Reimus
(2007), A colloid-facilitated transport model with variable colloid trans-
port properties, Geophys. Res. Lett., 34, L09401, doi:10.1029/
2007GL029625.

Samper, J., and C. Yang (2006), Stochastic analysis of transport and multi-
component competitive monovalent cation exchange in aquifers, Geo-
sphere, 2, 102–112, doi:10.1130/GES00030.1.

Sudicky, E. A., and E. O. Frind (1982), Contaminant transport in fractured
porous media: Analytic solutions for a system of parallel fractures, Water
Resour. Res., 18, 1634–1642.

Tang, D. H., E. O. Frind, and E. A. Sudicky (1981), Contaminant transport
in fractured porous media: Analytical solution for a single fracture, Water
Resour. Res., 17, 555–564.

Wolfsberg, A., L. Glascoe, G. Lu, A. Olson, P. Lichtner, M. McGraw,
T. Cherry, and G. Roemer (2002), TYBO/BENHAM: Model analysis
of groundwater flow and radionuclide migration from underground
nuclear tests in southwestern Pahute Mesa, Nevada Tech. Rep.
LA-13977, 424 pp., Los Alamos Natl. Lab., Los Alamos, N.M.

Xu, T., J. Samper, C. Ayora, M. Manzano, and E. Custodio (1999), Model-
ing of non-isothermal multicomponent reactive transport in field scale
porous media flow systems, J. Hydrol., 214, 144–164.

Yeh, G. T. (2000), Computational Subsurface Hydrology, Reactions, Trans-
port and Fate, 318 pp., Kluwer Acad., Dordrecht, Netherlands.

Zavarin, M., S. F. Carle, and R. M. Maxwell (2004), Upscaling radionuclide
retardation: Linking the surface complexation and ion exchange mechan-
istic approach to a linear Kd approach, Tech. Rep. UCRL-TR-204713,
Lawrence Livermore Natl. Lab., Livermore, Calif.

Zyvoloski, G. A., B. A. Robinson, and H. S. Viswanathan (2008), General-
ized double porosity: A numerical method for representing spatially vari-
able sub-grid scale processes, Adv. Water Resour., 31, 535–544.

�����������������������
Z. Dai, H. Deng, Z. Lu, and A. Wolfsberg, Earth and Environmental

Sciences Division, Los Alamos National Laboratory, Los Alamos, NM
87545, USA. (daiz@lanl.gov)

L01403 DAI ET AL.: UPSCALING SORPTION COEFFICIENTS L01403

5 of 5


